Нека су e = ( e 1 , e 2 , … , e n ) e=(e_1, e_2, \ldots, e_n) e = ( e 1 , e 2 , … , e n ) и e ′ = ( e 1 ′ , e 2 ′ , … , e n ′ ) e'=(e'_1, e'_2, \ldots, e'_n) e ′ = ( e 1 ′ , e 2 ′ , … , e n ′ ) базе
n n n -димензионалног векторског простора V n V^n V n . Даље, нека су координате вектора
v v v , где је A = O + v A=O+v A = O + v , у бази e e e једнаке x 1 x_1 x 1 , x 2 x_2 x 2 , … \ldots … , x n x_n x n , а у бази
e ′ e' e ′ једнаке x 1 ′ x'_1 x 1 ′ , x 2 ′ x'_2 x 2 ′ , … \ldots … , x n ′ x'_n x n ′ .
Осим тога, нека је матрица C C C таква да су јој колоне координате вектора
старе базе у новој. Ове координате су бројеви којима се множе вектори нове базе
да би се добили вектори старе:
e 1 = c 11 ⋅ e 1 ′ + c 21 ⋅ e 2 ′ + … + c n 1 ⋅ e n ′ , ⋮ e n = c 1 n ⋅ e 1 ′ + c 2 n ⋅ e 2 ′ + … + c n n ⋅ e n ′ , (1) \tag{1}\begin{aligned}e_1&={c_{11}}\cdot e'_1+{c_{21}}\cdot e'_2+\ldots+{c_{n1}}\cdot e'_n\text{,}\\&\ \,\vdots\\e_n&=c_{1n}\cdot e'_1+c_{2n}\cdot e'_2+\ldots+c_{nn}\cdot e'_n\text{,}\end{aligned} e 1 e n = c 11 ⋅ e 1 ′ + c 21 ⋅ e 2 ′ + … + c n 1 ⋅ e n ′ , ⋮ = c 1 n ⋅ e 1 ′ + c 2 n ⋅ e 2 ′ + … + c nn ⋅ e n ′ , ( 1 )
тј.
e = e ′ C , C = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c n n ] . e=e'C\text{,}\qquad C=\begin{bmatrix}{c_{11}}&c_{12}&\cdots&c_{1n}\\{c_{21}}&c_{22}&\cdots&c_{2n}\\\vdots&\vdots&&\vdots\\{c_{n1}}&c_{n2}&\cdots&c_{nn}\end{bmatrix}\text{.} e = e ′ C , C = c 11 c 21 ⋮ c n 1 c 12 c 22 ⋮ c n 2 ⋯ ⋯ ⋯ c 1 n c 2 n ⋮ c nn .
Ова матрица, C C C , се назива матрицом преласка са нове базе на стару.
Дакле, формулама (1) исказујемо векторе старе базе, e 1 e_1 e 1 , e 2 e_2 e 2 , … \ldots … ,
e n e_n e n преко вектора нове, e 1 ′ e'_1 e 1 ′ , e 2 ′ e'_2 e 2 ′ , … \ldots … , e n ′ e'_n e n ′ , ефективно
изражавајући векторе старе базе у новој бази.
Ако се ради о афином простору, за репер је, поред базе придруженог векторског
простора, битна и тачка коју смо изабрали за координатни почетак, тачка O O O . Ако
су њене координате у новој бази (бројеви којима се множе вектори нове базе)
једнаке c 1 ( n + 1 ) c_{1(n+1)} c 1 ( n + 1 ) , c 2 ( n + 1 ) c_{2(n+1)} c 2 ( n + 1 ) , … \ldots … , c n ( n + 1 ) c_{n(n+1)} c n ( n + 1 ) , онда тачку O O O
представљамо у бази e ′ e' e ′ на следећи начин:
O = c 1 ( n + 1 ) ⋅ e 1 ′ + c 2 ( n + 1 ) ⋅ e 2 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′ . O=c_{1(n+1)}\cdot e'_1+c_{2(n+1)}\cdot e'_2+\cdots+c_{n(n+1)}\cdot e'_n\text{.} O = c 1 ( n + 1 ) ⋅ e 1 ′ + c 2 ( n + 1 ) ⋅ e 2 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′ .
Напишимо сада израз за тачку A A A у старој бази и сведимо га на израз за исту
тачку у новој бази:
A = v + O = x 1 ⋅ e 1 + x 2 ⋅ e 2 + ⋯ + x n ⋅ e n + O = = x 1 ⋅ ( c 11 ⋅ e 1 ′ + ⋯ + c n 1 ⋅ e n ′ ) + = + x 2 ⋅ ( c 12 ⋅ e 1 ′ + ⋯ + c n 2 ⋅ e n ′ ) + = + ⋯ + = + x n ⋅ ( c 1 n ⋅ e 1 ′ + ⋯ + c n n ⋅ e n ′ ) + = + c 1 ( n + 1 ) ⋅ e 1 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′ \begin{aligned}A&=v+O=x_1\cdot e_1+x_2\cdot e_2+\cdots+x_n\cdot e_n+O=\\&=x_1\cdot(c_{11}\cdot e'_1+\cdots+c_{n1}\cdot e'_n)+\\&\phantom{=}+x_2\cdot(c_{12}\cdot e'_1+\cdots+c_{n2}\cdot e'_n)+\\&\phantom{=}+\cdots+\\&\phantom{=}+x_n\cdot(c_{1n}\cdot e'_1+\cdots+c_{nn}\cdot e'_n)+\\&\phantom{=}+c_{1(n+1)}\cdot e'_1+\cdots+c_{n(n+1)}\cdot e'_n\end{aligned} A = v + O = x 1 ⋅ e 1 + x 2 ⋅ e 2 + ⋯ + x n ⋅ e n + O = = x 1 ⋅ ( c 11 ⋅ e 1 ′ + ⋯ + c n 1 ⋅ e n ′ ) + = + x 2 ⋅ ( c 12 ⋅ e 1 ′ + ⋯ + c n 2 ⋅ e n ′ ) + = + ⋯ + = + x n ⋅ ( c 1 n ⋅ e 1 ′ + ⋯ + c nn ⋅ e n ′ ) + = + c 1 ( n + 1 ) ⋅ e 1 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′
Сада групишимо чланове уз векторе нове базе:
A = e 1 ′ ⋅ ( x 1 ⋅ c 11 + x 2 ⋅ c 12 + ⋯ + x n ⋅ c 1 n + c 1 ( n + 1 ) ) + = + e 2 ′ ⋅ ( x 1 ⋅ c 21 + x 2 ⋅ c 22 + ⋯ + x n ⋅ c 2 n + c 2 ( n + 1 ) ) + = + ⋯ + = + e n ′ ⋅ ( x 1 ⋅ c n 1 + x 2 ⋅ c n 2 + ⋯ + x n ⋅ c n n + c n ( n + 1 ) ) , \begin{aligned}A&=e'_1\cdot(x_1\cdot c_{11}+x_2\cdot c_{12}+\cdots+x_n\cdot c_{1n}+c_{1(n+1)})+\\&\phantom{=}+e'_2\cdot(x_1\cdot c_{21}+x_2\cdot c_{22}+\cdots+x_n\cdotc_{2n}+c_{2(n+1)})+\\&\phantom{=}+\cdots+\\&\phantom{=}+e'_n\cdot(x_1\cdot c_{n1}+x_2\cdot c_{n2}+\cdots+x_n\cdotc_{nn}+c_{n(n+1)})\text{,}\end{aligned} A = e 1 ′ ⋅ ( x 1 ⋅ c 11 + x 2 ⋅ c 12 + ⋯ + x n ⋅ c 1 n + c 1 ( n + 1 ) ) + = + e 2 ′ ⋅ ( x 1 ⋅ c 21 + x 2 ⋅ c 22 + ⋯ + x n ⋅ c 2 n + c 2 ( n + 1 ) ) + = + ⋯ + = + e n ′ ⋅ ( x 1 ⋅ c n 1 + x 2 ⋅ c n 2 + ⋯ + x n ⋅ c nn + c n ( n + 1 ) ) ,
тј.:
A = e ′ ⋅ ( C x T + O e ′ ) , x = ( x 1 , x 2 , … , x n ) = v e ′ . A=e'\cdot(Cx^{\text T}+O_{e'})\text{,}\qquad x=(x_1, x_2, \ldots,x_n)=v_{e'}\text{.} A = e ′ ⋅ ( C x T + O e ′ ) , x = ( x 1 , x 2 , … , x n ) = v e ′ .
Одавде су координате вектора v v v у новој бази x ′ T = C x T {x'}^{\text T}=Cx^{\text T} x ′ T = C x T , односно
матрица преласка са нове базе на стару је уједно матрица која преводи
координате вектора тачке у старој бази на координате у новој бази.
Увођењем хомогених координата имамо
x i = ξ i ξ n + 1 x_i=\frac{\xi_i}{\xi_{n+1}} x i = ξ n + 1 ξ i , па је:
A = ξ 1 ξ n + 1 ⋅ e 1 + ξ 2 ξ n + 1 ⋅ e 2 + ⋯ + ξ n ξ n + 1 ⋅ e n + O . A=\frac{\xi_1}{\xi_{n+1}}\cdot e_1+\frac{\xi_2}{\xi_{n+1}}\cdot e_2+\cdots+\frac{\xi_n}{\xi_{n+1}}\cdot e_n+O\text{.} A = ξ n + 1 ξ 1 ⋅ e 1 + ξ n + 1 ξ 2 ⋅ e 2 + ⋯ + ξ n + 1 ξ n ⋅ e n + O .
Множењем претходне једнакости са ξ n + 1 \xi_{n+1} ξ n + 1 добијамо:
ξ n + 1 A = ξ 1 ⋅ e 1 + ξ 2 ⋅ e 2 + ⋯ + ξ n ⋅ e n + ξ n + 1 O . \xi_{n+1}A=\xi_1\cdot e_1+\xi_2\cdot e_2+\cdots+\xi_n\cdot e_n+\xi_{n+1}O\text{.} ξ n + 1 A = ξ 1 ⋅ e 1 + ξ 2 ⋅ e 2 + ⋯ + ξ n ⋅ e n + ξ n + 1 O .
Превођењем у нову базу добијамо:
ξ n + 1 A = ξ 1 ⋅ ( c 11 ⋅ e 1 ′ + ⋯ c n 1 ⋅ e n ′ ) + = ξ 2 ⋅ ( c 12 ⋅ e 1 ′ + ⋯ c n 2 ⋅ e n ′ ) + = + ⋯ + = ξ n ⋅ ( c 1 n ⋅ e 1 ′ + ⋯ c n n ⋅ e n ′ ) + = ξ n + 1 ⋅ ( c 1 ( n + 1 ) ⋅ e 1 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′ ) \begin{aligned}\xi_{n+1}A&=\xi_1\cdot(c_{11}\cdot e'_1+\cdots c_{n1}\cdot e'_n)+\\&\phantom{=}\xi_2\cdot(c_{12}\cdot e'_1+\cdots c_{n2}\cdot e'_n)+\\&\phantom{=}+\cdots+\\&\phantom{=}\xi_n\cdot(c_{1n}\cdot e'_1+\cdots c_{nn}\cdot e'_n)+\\&\phantom{=}\xi_{n+1}\cdot(c_{1(n+1)}\cdot e'_1+\cdots+c_{n(n+1)}\cdot e'_n)\end{aligned} ξ n + 1 A = ξ 1 ⋅ ( c 11 ⋅ e 1 ′ + ⋯ c n 1 ⋅ e n ′ ) + = ξ 2 ⋅ ( c 12 ⋅ e 1 ′ + ⋯ c n 2 ⋅ e n ′ ) + = + ⋯ + = ξ n ⋅ ( c 1 n ⋅ e 1 ′ + ⋯ c nn ⋅ e n ′ ) + = ξ n + 1 ⋅ ( c 1 ( n + 1 ) ⋅ e 1 ′ + ⋯ + c n ( n + 1 ) ⋅ e n ′ )
Груписањем следи:
ξ n + 1 A = e 1 ′ ⋅ ( ξ 1 ⋅ c 11 + ξ 2 ⋅ c 12 + ⋯ + ξ n ⋅ c 1 n + ξ n + 1 c 1 ( n + 1 ) ) + = + e 2 ′ ⋅ ( ξ 1 ⋅ c 21 + ξ 2 ⋅ c 22 + ⋯ + ξ n ⋅ c 2 n + ξ n + 1 c 2 ( n + 1 ) ) + = + ⋯ + = + e n ′ ⋅ ( ξ 1 ⋅ c n 1 + ξ 2 ⋅ c n 2 + ⋯ + ξ n ⋅ c n n + ξ n + 1 c n ( n + 1 ) ) , \begin{aligned}\xi_{n+1}A&=e'_1\cdot(\xi_1\cdot c_{11}+\xi_2\cdot c_{12}+\cdots+\xi_n\cdot c_{1n}+\xi_{n+1}c_{1(n+1)})+\\&\phantom{=}+e'_2\cdot(\xi_1\cdot c_{21}+\xi_2\cdot c_{22}+\cdots+\xi_n\cdot c_{2n}+\xi_{n+1}c_{2(n+1)})+\\&\phantom{=}+\cdots+\\&\phantom{=}+e'_n\cdot(\xi_1\cdot c_{n1}+\xi_2\cdot c_{n2}+\cdots+\xi_n\cdot c_{nn}+\xi_{n+1}c_{n(n+1)})\text{,}\end{aligned} ξ n + 1 A = e 1 ′ ⋅ ( ξ 1 ⋅ c 11 + ξ 2 ⋅ c 12 + ⋯ + ξ n ⋅ c 1 n + ξ n + 1 c 1 ( n + 1 ) ) + = + e 2 ′ ⋅ ( ξ 1 ⋅ c 21 + ξ 2 ⋅ c 22 + ⋯ + ξ n ⋅ c 2 n + ξ n + 1 c 2 ( n + 1 ) ) + = + ⋯ + = + e n ′ ⋅ ( ξ 1 ⋅ c n 1 + ξ 2 ⋅ c n 2 + ⋯ + ξ n ⋅ c nn + ξ n + 1 c n ( n + 1 ) ) ,
Можемо проширити матрицу C C C на следећи начин:
C ‾ = [ C O e ′ T 0 ⃗ 1 ] , O e ′ = ( c 1 ( n + 1 ) , c 2 ( n + 1 ) , … , c n ( n + 1 ) ) , 0 ⃗ = ( 0 , 0 , … , 0 ) . \overline{C}=\begin{bmatrix}C&O_{e'}^{\text T}\\\vec 0&1\end{bmatrix}\text{,}\qquad O_{e'}=(c_{1(n+1)}, c_{2(n+1)}, \ldots,c_{n(n+1)})\text{,}\qquad\vec0=(0, 0, \ldots, 0)\text{.} C = [ C 0 O e ′ T 1 ] , O e ′ = ( c 1 ( n + 1 ) , c 2 ( n + 1 ) , … , c n ( n + 1 ) ) , 0 = ( 0 , 0 , … , 0 ) .
Сада је за λ ξ n + 1 ′ = ξ n + 1 \lambda\xi'_{n+1}=\xi_{n+1} λ ξ n + 1 ′ = ξ n + 1 :
λ ⋅ ξ ′ ⋅ [ e ′ 0 0 ⃗ 1 ] T = λ ξ n + 1 ′ ⋅ [ A 1 ] T = ( C ‾ ξ T ) T ⋅ [ e ′ 0 0 ⃗ 1 ] T , ξ = ( ξ 1 , ξ 2 , … , ξ n + 1 ) , \begin{aligned}\lambda\cdot\xi'\cdot\begin{bmatrix}e'&0\\\vec0&1\end{bmatrix}^{\text T}=\lambda\xi'_{n+1}\cdot\begin{bmatrix}A\\1\end{bmatrix}^{\text T}=(\overline{C}\xi^{\text T})^{\text T}\cdot\begin{bmatrix}e'&0\\\vec0&1\end{bmatrix}^{\text T}\text{,}\qquad\xi=(\xi_1, \xi_2, \ldots, \xi_{n+1})\text{,}\end{aligned} λ ⋅ ξ ′ ⋅ [ e ′ 0 0 1 ] T = λ ξ n + 1 ′ ⋅ [ A 1 ] T = ( C ξ T ) T ⋅ [ e ′ 0 0 1 ] T , ξ = ( ξ 1 , ξ 2 , … , ξ n + 1 ) ,
па је λ ξ ′ T = C ‾ ξ T \lambda{\xi'}^{\text T}=\overline{C}\xi^{\text T} λ ξ ′ T = C ξ T за ξ ′ = ( ξ 1 ′ , ξ 2 ′ , … , ξ n + 1 ′ ) \xi'=(\xi'_1,\xi'_2, \ldots, \xi'_{n+1}) ξ ′ = ( ξ 1 ′ , ξ 2 ′ , … , ξ n + 1 ′ ) . (C ‾ \overline{C} C је матрица центроафине
трансформације.)